WBCS (Main) Exam Paper - VI Practice Set

Answers with Explanation

1. (b) Required remainder $=$ remainder got when 63 is divided by $29=5$
2. (d) A number will be exactly divisible by 18 if it is divisible by 2 and 9 both. Clearly 65043 is not divisible by 2 .
\therefore Required number $=65043$
3. (b) Given
$\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=\frac{14}{15}$
$\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{d}}{\mathrm{c}}=\frac{35}{24}$
Now multiplying both the equations
$\frac{\mathrm{ac}}{\mathrm{bd}} \times \frac{\mathrm{ad}}{\mathrm{bc}}=\frac{14}{15} \times \frac{35}{24}$
$\Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{49}{36} \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=\frac{7}{6}$
$\therefore \frac{\mathrm{c}}{\mathrm{d}}=\frac{\frac{14}{\frac{7}{7}}}{\frac{6}{6}}=\frac{4}{5}$
ख্ডাভ্যির্ה

But the greater fraction is $\frac{7}{6}$
4. (c) Given that
L.C.M. of two numbers $=1820$
H.C.F. of those numbers $=26$

One of the number is 130
\therefore Another number
$=\frac{1820 \times 26}{130}=364$
5. (d) First number \times Second number
$=\mathrm{HCF} \times \mathrm{LCM}$
$\Rightarrow 864 \times$ Second number
$=96 \times 1296 \Rightarrow$ Second number
$=\frac{96 \times 1296}{864}=144$
6. (a) L.C.M. of 28 and 42

फ़ापि४র্ज

2	28	42
2	14	21
7	7	21
	1	3

$=2 \times 2 \times 7 \times 3=84$
H.C.F. of 28 and 42
28) $42(1$

$$
\begin{gathered}
\frac{28}{14)} 28(2 \\
\frac{28}{00}
\end{gathered}
$$

खुपिएর্র

\therefore H.C. $F=14$
Required ratio $=\frac{84}{14}=6: 1$
7. (c) $1+\frac{1}{1+\frac{2}{\frac{15+4}{5}}}$
$=1+\frac{1}{1+\frac{2 \times 5}{19}}=1+\frac{1}{\frac{19+10}{19}}$
$=1+\frac{19}{29}=\frac{29+19}{29}=\frac{48}{29}$
खाரিির্ম
8. (a) $\frac{1}{9}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}$
$=\frac{1}{9}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\frac{1}{5 \times 6}+\ldots . \frac{1}{8 \times 9}$
$=\frac{1}{9}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots .+\frac{1}{8}-\frac{1}{9}=\frac{1}{2}$
9. (b) $\sqrt{\frac{(0.1)^{2}+(0.01)^{2}+(0.009)^{2}}{(0.01)^{2}+(0.001)^{2}+(0.0009)^{2}}}$
$=\sqrt{\frac{0.01+0.0001+0.000081}{0.0001+0.000001+0.00000081}}$
$=\sqrt{\frac{0.010181}{0.00010181}}=\sqrt{100}=10$
10. (b) Sum of x numbers $=x y$

Sum of y numbers $=\mathrm{xy}$
سাঙ্ভির্ম
\therefore Required average
$=\frac{x y+x y}{x+y}=\frac{2 x y}{x+y}$
11. (a) Required average

$$
\begin{aligned}
& =\frac{1.11+0.01+0.101+0.001+0.11}{5} \\
& =\frac{1.332}{5}=0.2664
\end{aligned}
$$

12. (c) The middle number
$=8 \times 6.5+8 \times 9.5-15 \times 7$
$=52+76-105$
$=128-105=23$
13. (c) $\frac{x}{y}=\frac{5}{6}$

$$
\therefore \frac{3 \mathrm{x}^{2}-2 \mathrm{y}^{2}}{\mathrm{y}^{2}-\mathrm{x}^{2}}=\frac{3 \cdot \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}-2}{1-\frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}}
$$

ख्याप्रिएर्त

$$
=\frac{3 \times \frac{25}{36}-2}{1-\frac{25}{36}}=\frac{75-72}{36-25}=\frac{3}{11}=3: 11
$$

14. (d) $\mathrm{A}: \mathrm{B}=3: 5=12: 20$
$B: C=4: 7=20: 35$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=12: 20: 35$
15. (a) $\frac{x}{y}=\frac{3}{4}$
$\therefore \frac{4 x-y}{2 x+3 y}=\frac{4 \frac{x}{y}-1}{2 \frac{x}{y}+3}$
$=\frac{4 \times \frac{3}{4}-1}{2 \times \frac{3}{4}+3}$
$=\frac{2}{\frac{3}{2}+3}=\frac{2 \times 2}{9}=4: 9$
16. (b) 20% of $\mathrm{A}=50 \%$ of B

$$
\Rightarrow 2 \mathrm{~A}=5 \mathrm{~B} \Rightarrow \mathrm{~A}=\frac{5 \mathrm{~B}}{2}
$$

Let B is $\mathrm{x} \%$ of A .
$\therefore \frac{5 \mathrm{~B}}{2} \times \frac{\mathrm{x}}{100}=\mathrm{B}$

17. (c) Required percentage
$=\frac{24}{40} \times 100=60 \%$
18. (b) Required number
$=60 \%$ of $90=\frac{90 \times 60}{100}=54$
19. (a) Let the C.P. of each book be Re. 1.
\therefore Total C.P. of 25 books $=$ Rs. 25
Their S.P. $=₹ 20$
\therefore Loss per cent
$=\left(\frac{25-20}{25}\right) \times 100$
$=\frac{5}{25} \times 100=20 \%$
20. (c) Loss per cent

ख্যাভ্যির্ম
$=\frac{400-320}{400} \times 100$
$=\frac{80}{400} \times 100=20 \%$
21. (b) C.P. $=12$
S.P. $=12 \times 1.25=15$

Total Profit $=15-12=3$
$\%$ gain $=\frac{3}{12} \times 100=25 \%$
22. (c) Successive discounts of $x \%$ and $y \%$
$=\left(x+y-\frac{x \times y}{100}\right) \%$
\therefore Required discount
$=\left(20+10-\frac{20 \times 10}{100}\right) \%$
$=30-2=28 \%$

23. (c) Let the cost price be x

Mark Price $=\left(1+\frac{20}{100}\right) \mathrm{x}=1.2 \mathrm{x}$
Cash price $=\left(1-\frac{30}{100}\right) 1.2 \mathrm{x}$
$=0.7 \times 1.2 \mathrm{x}=0.84 \mathrm{x}$
Net Loss $=\mathrm{x}-0.84 \mathrm{x}=0.16 \mathrm{x}$
\therefore Net loss\%
$=\frac{0.16 x}{x} \times 100=16 \%$
24. (b) C.P. of article $=₹ 100$

Marked price $=₹ 150$
S.P. $=\frac{150 \times 60}{100}=₹ 90$

Loss $=100-90=₹ 10$ i.e. 10%
25. (a) Simple interest for 2 years
$=(568-520)=48$
\therefore Interest for 5 years
$=₹ \frac{48}{2} \times 5=₹ 120$
Principal $=(520-120)=₹ 400$
26. (a) $4200=\frac{29400 \times 6 \times \mathrm{R}}{100}$
$\Rightarrow \mathrm{R}=\frac{4200}{294 \times 6}=\frac{50}{21}=2 \frac{8}{21} \%$
27. (c) If the principal be 100 then
S.I. = ₹ 100 .
\therefore Time $=\frac{\text { S.I. } \times 100}{\text { Principal } \times \text { Rate }}$
$=\frac{100 \times 100}{100 \times 12}=\frac{25}{3}$ years
$=8$ years 4 months
28. (a) $5832=\mathrm{P}\left(1+\frac{8}{100}\right)^{2}$
$\Rightarrow 5832=\mathrm{P}\left(1+\frac{2}{25}\right)^{2}$
$\Rightarrow 5832=\mathrm{P} \times \frac{27}{25} \times \frac{27}{25}$
$\Rightarrow \mathrm{P}=\frac{5832 \times 25 \times 25}{27 \times 27}=₹ 5000$
29. (b) $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$
$\Rightarrow 882=800\left(1+\frac{5}{100}\right)^{\mathrm{T}}$
$\Rightarrow \frac{882}{800}=\left(\frac{21}{20}\right)^{\mathrm{T}}$
$\Rightarrow \frac{441}{400}=\left(\frac{21}{20}\right)^{2}=\left(\frac{21}{20}\right)^{\mathrm{T}}$
$\therefore \mathrm{T}=2$ years
30. (d) Principal $=\frac{\text { S.I. } \times 100}{\text { Time } \times \text { Rate }}$
$=\frac{80 \times 100}{2 \times 4}=₹ 1000$
\therefore C.I. $=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}-1\right]$
$=1000\left[\left(1+\frac{4}{100}\right)^{2}-1\right]$
$=1000\left[\left(\frac{26}{25}\right)^{2}-1\right]$
$=1000\left(\frac{676}{625}-1\right)$
$=1000\left(\frac{676-625}{625}\right)$

$=\frac{1000 \times 51}{625}=₹ 81.60$

Wुप्विएर्ज

31. (d) A's 1 day's work $=\frac{1}{4}$

B's 1 day's work $=\frac{1}{12}$
($\mathrm{A}+\mathrm{B}$)'s 1 day's work
$=\frac{1}{4}+\frac{1}{12}=\frac{3+1}{12}=\frac{4}{12}=\frac{1}{3}$
\therefore Required time $=3$ days
32. (b) A's 2 days' work $=$ B's 3 days' work
\therefore Time taken by $\mathrm{A}=8$ days
\therefore Time taken by $B=\frac{8}{2} \times 3=12$ days
33. (d) Work done by $(A+C)$ in 2 days
$=2\left(\frac{1}{10}+\frac{1}{20}\right)=2\left(\frac{2+1}{20}\right)=\frac{6}{20}=\frac{3}{10}$
Remaining work $=1-\frac{3}{10}=\frac{7}{10}$
($\mathrm{B}+\mathrm{C}$)'s 1 day's work
$=\frac{1}{15}+\frac{1}{20}=\frac{4+3}{60}=\frac{7}{60}$
\therefore Time taken by $(B+C)$ to finish $\frac{7}{10}$ part of the work $=\frac{60}{7} \times \frac{7}{10}=6$ days
\therefore Total time $=2+6=8$ days
34. (a) Part of the cistern filled by both pipes in 1 hour
$=\frac{1}{10}+\frac{1}{15}=\frac{3+2}{30}=\frac{1}{6}$
क्पाप्षिएर्य
\therefore The cistern will be filled in 6 hours.
35. (d) Work done in 1 hour by the filling pump $=\frac{1}{2}$

Work done in 1 hour by the leak and the filling pump $=\frac{3}{7}$
\therefore Work done by the leak in 1 hour
$=\frac{1}{2}-\frac{3}{7}=\frac{7-6}{14}=\frac{1}{14}$
Hence, the leak can empty the tank in 14 hours.
36. (d) 300 days $=(300 \times 24)$ hours
$=(300 \times 24 \times 60 \times 60)$ seconds
\therefore Number of drops
कुप्वििर्स
$=300 \times 24 \times 60 \times 60$
$\because 600$ drops $=100 \mathrm{ml}$.
$\therefore 300 \times 24 \times 60 \times 60$ drops
$=\left(\frac{300 \times 24 \times 60 \times 60}{6}\right) \mathrm{ml}$.
$=(1200 \times 60 \times 60) \mathrm{ml}$.
$=\left(\frac{1200 \times 60 \times 60}{1000}\right)$ litre $=4320$ litre.
37. (b) Time taken $=\frac{\text { Distance }}{\text { Time }}$

खुाज्डिर्म
$=\frac{\frac{4}{5}}{45}$ hour $=\frac{4 \times 60 \times 60}{5 \times 45}$ sec. $=64$ seconds
38. (a) Time $=10 \frac{1}{2}$ hours $=\frac{21}{2}$ hours

Speed $=40 \mathrm{kmph}$
Distance $=$ Speed \times Time
$=40 \times \frac{21}{2}=420 \mathrm{~km}$
39. (d) $\because 1 \mathrm{~m} / \mathrm{sec}=\frac{18}{5} \mathrm{kmph}$
$\therefore \frac{10}{3} \mathrm{~m} / \mathrm{sec}$
$=\frac{18}{5} \times \frac{10}{3}=12 \mathrm{kmph}$
ख্যাভ্যির্ম
40. (b) Rate downstream $=\frac{18}{4}=\frac{9}{2} \mathrm{kmph}$

क्याডিिর্स
Rate upstream $=\frac{18}{12}=\frac{3}{2} \mathrm{kmph}$.
Now, speed of the stream
$=\frac{\text { Rate downstream }- \text { Rate upstream }}{2}$
$=\frac{\frac{9}{2}-\frac{3}{2}}{2}=\frac{6}{4}=\frac{3}{2}=1.5 \mathrm{kmph}$.
41. (b) Speed upstream $=\frac{40}{8}=5 \mathrm{kmph}$

Speed downstream $=\frac{36}{6}=6 \mathrm{kmph}$
\therefore Speed of boat in still water
$=\frac{1}{2}(5+6)=5.5 \mathrm{kmph}$
क्यापि氏स
42. (d) Speed of current
$=\frac{1}{2}$ (rate downstream - rate upstream $)$
$=\frac{1}{2}(14-8) \mathrm{kmph}=3 \mathrm{kmph}$
43. (d) Let the breadth of rectangular hall $=x \mathrm{~m}$.
\therefore length $=(x+5) \mathrm{m}$.
Area of hall $=$ Length \times Breadth
$\Rightarrow 750=(x+5) x$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-750=0$

$\Rightarrow \mathrm{x}^{2}+30 \mathrm{x}-25 \mathrm{x}-750=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+30)-25(\mathrm{x}+30)=0$
$\Rightarrow(\mathrm{x}-25)(\mathrm{x}+30)=0$
$\Rightarrow x=25$, as x cannot be negative.
\therefore Length of hall $=\mathrm{x}+5$
$=25+5=30 \mathrm{~m}$.
44. (a) Let the length and breadth of the rectangle be $3 x$ and $2 x \mathrm{~cm}$ respectively.
Then, $2(3 x+2 x)=20$
$\Rightarrow 10 \mathrm{x}=20 \Rightarrow \mathrm{x}=\frac{20}{10}=2$
\therefore Length $=3 \mathrm{x}=3 \times 2=6 \mathrm{~cm}$
Breadth $=2 \mathrm{x}=2 \times 2=4 \mathrm{~cm}$
\therefore Area $=6 \times 4=24 \mathrm{~cm}^{2}$
45. (c) Perimeter of rhombus $=2 \sqrt{\mathrm{~d}_{1}^{2}+\mathrm{d}_{2}^{2}}$

Where d_{1} and d_{2} are diagonals.
$\therefore 2 \sqrt{\mathrm{~d}_{1}^{2}+\mathrm{d}_{2}^{2}}=100$

$\Rightarrow \sqrt{\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}}=50$
$\Rightarrow \mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}=2500$
फ़ापिर्ज
$\Rightarrow(14)^{2}+\mathrm{d}_{2}^{2}=2500$
$\Rightarrow \mathrm{d}_{2}^{2}=2500-196=2304$
$\therefore \mathrm{d}_{2}=\sqrt{2304}=48$
\therefore Area of the rhombus $=\frac{1}{2} \mathrm{~d}_{1} \times \mathrm{d}_{2}$
$=\frac{1}{2} \times 14 \times 48=336$ sq. cm .
46 (c) $\frac{1}{2(1+\mathrm{b})}=\frac{5}{18} \Rightarrow \frac{1}{1+\mathrm{b}}=\frac{5}{9}$
$\Rightarrow \frac{1+\mathrm{b}}{1}=\frac{9}{5} \Rightarrow \frac{1+\mathrm{b}}{1}-1=\frac{9}{5}-1$
ख্যাডিভির্ম
$\Rightarrow \frac{\mathrm{b}}{\mathrm{l}}=\frac{4}{5}$
$\Rightarrow 1: \mathrm{b}=5: 4$
47. (d) If d_{1} and d_{2} are the lengths of diagonals of a rhombus. Then

Perimeter $=2 \sqrt{\mathrm{~d}_{1}^{2}+\mathrm{d}_{2}^{2}}$
$=2 \sqrt{24^{2}+10^{2}}$
$=2 \sqrt{576+100}=2 \sqrt{676}$
$=2 \times 26=52 \mathrm{~cm}$

ख্যাড্ভির্M

48. (b) Length of the rubber band
$=3 \mathrm{~d}+2 \pi \mathrm{r}$
$=(30+10 \pi) \mathrm{cm}$
49. (b) $\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{4+3+2 \times 2 \sqrt{3}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{(2)^{2}+(\sqrt{3})^{2}+2 \times 2 \times \sqrt{3}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{(2+\sqrt{3})^{2}}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+8 \sqrt{(2+\sqrt{3})}}}$
$=\sqrt{-\sqrt{3}+\sqrt{3+16+8 \sqrt{3}}}$
$=\sqrt{-\sqrt{3}+\sqrt{(\sqrt{3})^{2}+(4)^{2}+2 \times 4 \times \sqrt{3}}}$
$=\sqrt{-\sqrt{3}+\sqrt{(4+\sqrt{3})^{2}}}$
खुा ब्धिस
$=\sqrt{-\sqrt{3}+4+\sqrt{3}}=\sqrt{4}=2$
50. (c) Expression
$=\frac{0.3555 \times 0.5555 \times 2.025}{0.225 \times 1.7775 \times 0.2222}$
$=\frac{3555 \times 5555 \times 2025}{225 \times 17775 \times 2222}=4.5$
سাড্ভির্ন
51. (d) Room is a part of the house. Similarly, nation is a part of the world.
52. (c) Pen is filled with ink. Similarly, vein is filled with blood.
53. (d) Architect is responsible for the construction of building. Similarly, statues are carved out by Sculptor.
54. (c) The lack of blood is called Anaemia. Similarly, the absence of Government is called Anarchy.
55. (a) we have $210=(14)^{2}+14$ and $380=(19)^{2}+19$
Similarly, $182=(13)^{2}+13$ and
$(18)^{2}+18=342$
56. (a) $42=(7)^{2}-7=49-7$
$56=(8)^{2}-8=64-8$
Similarly, $132=(12)^{2}-12=144-12$
Therefore, ? $=(13)^{2}-13=169-13=156$
57. (a) XXIV $\times 2 \Rightarrow 24 \times 2=48$

Similarly,
XIV $\times 2=14 \times 2=28$
58. (c)

Clearly, D is father of A's mother (C) i.e., grandfather (maternal) of A.
59. (b) B is sister of F .

Therefore, B is sister-in-law of M .
60. (b) Only sister of Kala's brother means Kala herself.
Therefore, Mala is daughter of Kala.
61. (a) \square
? $=39 \times 23 \div 21 \times 5$
आपভिएर्त

$$
\begin{aligned}
& \text { or, ? }=39+23-21+5 \\
& \text { or, ? }=67-21=46
\end{aligned}
$$

62. (b)

$+\Rightarrow \div$	$\div \Rightarrow-$
$-\Rightarrow \times$	$\times \Rightarrow+$

Given expression

$12+6 \div 3-2 \times 8=$?
After changing the signs
? $=12 \div 6-3 \times 2+8$
or, $?=2-6+8$
or, ? $=10-6=4$
63. (b)

$+\Rightarrow \div$	$\div \Rightarrow-$
$-\Rightarrow \times$	$\times \Rightarrow+$

$12-8 \times 6-4 \div 6+3=$?
\Rightarrow ? $=12 \times 8+6 \times 4-6 \div 3$
\Rightarrow ? $=96+24-2$
$\Rightarrow ?=120-2=118$
64. (c) Salary is the remuneration one gets in lieu of service rendered by him/her. But all others are types of investment (or deposit).
65. (d) Except ear, all others are internal organs.
66. (a) Except 8 , all other numbers are multiples of 7 .
$42=7 \times 6$
$49=7 \times 7$ $35=7 \times 5$
67. (c) Except 124, all other numbers are completely divisible by 3 . Thus,
$24 \div 3=8$
$60 \div 3=20$
$210 \div 3=70$
سাড্ভির্জ
But,
$124 \div 3=41.33$
68. (b)

Starting Point
69. (b)

Now, she is moving towards West.
70. (c)

Now Suresh is in the East direction from the starting point.

खाप্ভির্র
71. (d)

It is clear from the diagram that Amit was 5 km away from the starting point.
72. (c) The day before yesterday was Friday. Therefore, today is Sunday.
The day-after-tomorrow will be Tuesday Tuesday $+3=$ Saturday
73. (d) Today is Saturday -2
$=$ Thursday
Yesterday \rightarrow Wednesday
Wednesday $-3=$ Sunday
74. (b) When it appears $6: 30$ in mirror, the real time would be 5:30.
75. (b) The given number series is based on the following pattern :
$2 \times 2+1=5$
$5 \times 2-1=9$
$9 \times 2+1=19$
$19 \times 2-1=37$
$37 \times 2+1=75$
76. (d)

Mणपियन
77. (c)

78. (d) $1+(2)^{2}=5$
$5+(4)^{2}=21$
$21+(6)^{2}=57$
$57+(8)^{2}=121$
$121+(10)^{2}=221$
79. (b) $\mathrm{A}=1 \rightarrow$ The position number in English alphabet.

$$
\begin{array}{rcc}
\mathrm{P} & \mathrm{~A} & \mathrm{~T} \\
\downarrow & \downarrow & \downarrow \\
16+1 & +20=\frac{37}{\downarrow}
\end{array}
$$

Wापिएनिन्त
Sum of Position Numbers of the letters in English alphabet.

Similarly,

$16+1$	$+20=\frac{37}{\mathrm{~A}}$
T	P
\downarrow	\downarrow
$20+1$	\downarrow
	$16=37$

क्यापियर्स
80. (b) R O S E

R	O	S	E	
\downarrow	\downarrow	\downarrow	\downarrow	
6	8	2	1	
C	H	A	I	R
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
7	3	4	5	6

Therefore,

S	E	A	R	C	H
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2	1	4	6	7	3
4	0	8	9	2	7
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
E	U	R	B	S	A

82. (c) The letter ' R ' is not present in the word PHOTOSYNTHETIC.
83. (b) There is no letter ' S ' in the keyword.
84. (d) There is no ' T ' letter in the given word. Therefore, the word INITIAL cannot be formed.
$P \mathrm{RO}$ V I N C I ALIS M
\Rightarrow S A I L O R
आप्িिিर्त
PROVIN C I A L I S M
\Rightarrow N A I L
PR O V I N C I A LIS M
$\Rightarrow \mathrm{MAN}$
85. (a) Both the Premises are Universal Affirmative (A-type).
All carts are cars.

All cars are trains.
A $+\mathrm{A} \Rightarrow$ A-type of Conclusion
"All carts are trains."
This is Conclusion I.
86. (c) Both the Premises are Universal Affirmative (A-type)
All men are women

All women are crazy.
A $+A \Rightarrow A$ - type of Conclusion
"All men are crazy".
This is Conclusion I.
Conclusion III is the Converse of it.

Conclusion IV is the Converse of Statement Q
87. (b) First Premise is Particular Affirmative (I-type)

Second Premise is Universal Negative (Etype).
Some skirts are benches.
फ्यापिएय

No bench is a table.
$\mathrm{I}+\mathrm{E} \Rightarrow$ O-type of Conclusion
"Some skirts are not tables."
Conclusion II is Converse of the first Premise
88. (a) Uma > Suma

Neha > Suma
Hema > Sudha > Uma > Neha ... (iii)
From (i), (ii) and (iii)
Hema > Sudha > Uma > Neha > Suma
Hence Hema is tallest.
89. (a) $\mathrm{B}=2 \mathrm{~A}$
$\mathrm{F}=2 \mathrm{~B}$
$\mathrm{A}=2 \mathrm{C}$
$C=2 D$
$\Rightarrow \mathrm{F}=2 \mathrm{~B}=4 \mathrm{~A}=8 \mathrm{C}=16 \mathrm{D}$
फुपिएर्य
$\mathrm{F}>\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$
Hence second oldest is B .
90. (b) Arun's rank from the last
$=31-17+115$ th
91. (b) First figure
$\Rightarrow 15+12=27$
and, $27 \div 9=3$
Second figure $\Rightarrow 44+28=72$
and, $72 \div 9=8$
Similarly, in third figure
$64+53=117$
and, $117 \div 9=13$
92. (a) First figure
$15+16=22+9$
or, $31=31$

Second figure

$13+7=11+9$
or, $20=20$
Third figure
$21+15=?+13$
or, ? $=36-13=23$
93. (d) $(0)^{2}+(3)^{2}+(1)^{2}+(2)^{2}$
$=0+9+1+4=14$
$(3)^{2}+(5)^{2}+(2)^{2}+(4)^{2}$
$=9+25+4+16=54$
$(3)^{2}+(1)^{2}+(6)^{2}+(5)^{2}$
$=9+1+36+25=71$
94. (c) The sum of upper two numbers is equal to the lower number.
$22+10=32$
फ़ापिएर्य
$14+74=88$
Similarly,
$33+26=59$
95. (b) The sum of the four numbers located in the four arms is equal to the central number.

1st Figure

$1+44+33+22=110$
2nd Figure
$16+40+32+24=112$
3rd Figure
$?+12+34+23=114$
$\Rightarrow ?=114-59=45$
96. (c) Meaningful order :
(c) Room \downarrow
(a) House \downarrow
(b) Road \downarrow
(d) Hemlet
\downarrow
(e) District
97. (c) Meaningful order of the given words:
(b) Seed
\downarrow
(e) Plant
(a) Tree
\downarrow
(c) Flower
\downarrow
(d) Fruit
98. (b) Mine yields ore. Ore is processed which gives gold and then ornaments are made from gold.
(d) Mine
(c) $\stackrel{\downarrow}{\downarrow}$
\downarrow
(e) Process

99. (d) The six colours are : Indigo, Violet, Orange, Red, Green and Blue.
The colours Indigo, Blue and Red are on the faces adjacent to Green and therefore, these colours cannot be on the face opposite to Green.
After careful observation of all the views of dice, it is clear that Orange lies opposite to Green.
100. (d) There are seven blocks in the given figure.

